Math 249 Lecture 4 Notes

Daniel Raban

August 30, 2017

1 Finite Group Representations over \mathbb{C}

1.1 Permutation representations

Definition 1.1. A matrix representation is a homomorphism $\rho : G \to \operatorname{GL}_n(\mathbb{C})$.

Example 1.1. The symmetric group S_n has a matrix representation $S_n \to \operatorname{GL}_n(\mathbb{C})$ sending $\sigma \mapsto P_{\sigma}$, where $(P_{\sigma})_{i,j} = \delta_{i,\sigma(j)}$ (the corresponding permutation matrix). Note that $P_{\sigma}e_j = e_{\sigma(j)}$.

Definition 1.2. For $\sigma \in S_n$, the sign $(-1)^{\sigma}$ of σ is det (P_{σ}) .

The sign function is a homomorphism from $S_n \to \{\pm 1\}$. Also, any transposition (a permutation of the form $\sigma = (i \ j)$) has sign -1. Since any permutation can be factored into a product of transpositions, this provides a method of computing the sign of a permutation. In particular, a k-cycle is the product of k-1 transpositions; $(i_1 \cdots i_{k-1} i_k) = (i_1 i_k)(i_1 \cdots i_{k-1})$. Then we can also say that the sign of σ is $(-1)^{\text{number of even length cycles}}$.

Definition 1.3. The signed permutation group B_n is the set of matrices in $GL_n(\mathbb{C})$ with entries either 0 or ± 1 and with only 1 nonzero entry in each row and column.

We have a short exact sequence

$$1 \to \{\pm 1\}^n \to B_n \to S_n \to 1.$$

In fact, $B_n = S_n \rtimes \{\pm 1\}^n$, where the action of S_n on $\{\pm 1\}^n$ permutes the components.

1.2 Reflections in \mathbb{R}^n

Definition 1.4. A reflection in \mathbb{R}^n is $T : \mathbb{R}^n \to \mathbb{R}^n$ such that T is diagonalizable with entries 1 (multiplicity n-1) and -1 (with multiplicity 1).

This makes $\mathbb{R}^n = \underbrace{V}_{\dim n-1} \oplus \underbrace{\mathbb{R}v}_{\dim 1}$, where $T|_V = \mathrm{id}$ and T(v) = -v.

In S_n , the image of a transposition $\tau = (ij)$ under the representation is a reflection P_{τ} . This is because

$$P_{\tau}e_k = e_k \text{ for } k \neq i, j$$
 $P_{\tau}(e_i + e_j) = e_i + e_j$ $P_{\tau}(e_i - e_j) = -(e_i - e_j).$

In B_n , the reflections are

- 1. $\tau = (i j) \in S_n$
- 2. elements of the form $(i \bar{j})_+$, which send $e_i \mapsto -e_j$ and $e_j \mapsto -e_i$
- 3. elements of the form $(i)_{-}$, which send $e_i \mapsto -e_i$.

Let's clarify the cycle notation for B_n . The bar over the *j* refers to -1 times the *j*th element. The + subscript means that $\overline{j} \mapsto i$; a - sign would mean that $j \mapsto -i$.

1.3 More basic definitions

Definition 1.5. Matrix representations ρ and ρ' are *similar* if there is some $S \in GL_n(\mathbb{C})$ such that $\rho'(g) = S\rho(g)S^{-1}$.

This basically amounts to the matrices being expressed in different representations. If two representations ρ and ρ' are similar, then $\rho(q)$ and $\rho'(q)$ will be similar matrices.

Definition 1.6. The *character* of a representation ρ is the function $\chi_{\rho}(g) = \operatorname{tr}(\rho(g))$.

Characters are constant on conjugacy classes because

$$\chi_{\rho}(hgh^{-1}) = \operatorname{tr}(\rho(hgh^{-1})) = \operatorname{tr}(\rho(h)\rho(g)\rho(h)^{-1}) = \operatorname{tr}(\rho(g)) = \chi_{\rho}(g),$$

using the fact that the trace is invariant under conjugation. So if ρ and ρ' are similar, then $\chi_{\rho'} = \chi_{\rho}$. So χ_{ρ} determines ρ up to similarity!

It is often useful to work in a little more generality:

Definition 1.7. Let V be a finite dimensional vector space over \mathbb{C} , and let GL(V) be the set of invertible linear maps $V \to V$. A *linear representation* of G on V is a homomorphism $\rho: G \to GL(V)$.

Remark 1.1. If $V = \mathbb{C}^n$, then the linear representation is the same as the matrix representation. If $V \cong \mathbb{C}^n$, then by choosing a basis, we can naturally recover the matrix representation from the linear representation. Choosing a different basis will result in a similar representation.